Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost

نویسندگان

  • Susan M. Natali
  • Edward A. G. Schuur
  • Rachel L. Rubin
چکیده

1. The response of northern tundra plant communities to warming temperatures is of critical concern because permafrost ecosystems play a key role in global carbon (C) storage, and climateinduced ecological shifts in the plant community will affect the transfer of carbon-dioxide between biological and atmospheric pools. 2. This study, which focuses on the response of tundra plant growth and phenology to experimental warming, was conducted at the Carbon in Permafrost Experimental Heating Research project, located in the northern foothills of the Alaska Range. We used snow fences coupled with spring snow removal to increase deep-soil temperatures and thaw depth (winter warming), and open-top chambers to increase summer air temperatures (summer warming). 3. Winter warming increased wintertime soil temperature (5–40 cm) by 2.3 C, resulting in a 10% increase in growing season thaw depth. Summer warming significantly increased growing season air temperature; peak temperature differences occurred nearmiddaywhen summerwarming plots were approximately 1.0 Cwarmer than ambient plots. 4. Changes in the soil environment as a result of winter warming treatment resulted in a 20% increase in above-ground biomass and net primary productivity (ANPP), while there was no detected summer warming effect on ecosystem-level ANPP or biomass. Both summer and winter warming extended the growing season through earlier bud break and delayed senescence, despite equivalent snow-free days across treatments. As with ANPP, winter warming increased canopy N mass by 20%,while there was no summer warming effect on canopyN. 5. The warming-mediated increase in N availability, coupled with phenological shifts, may have driven higher rates of ANPP in the winter warming plots, and the lack of ecosystem-level N and ANPP response to summerwarming suggest continuedN limitation in the summer warming plots. 6. Synthesis: These results highlight the role of soil and permafrost dynamics in regulating plant response to climate change and provide evidence that warming may promote greater C accumulation in tundra plant biomass. While warming temperatures are expected to enhance microbial decomposition of the large pool of organicmatter stored in tundra soils and permafrost, these respiratory losses may be offset, at least in part, by warming-mediated increases in plant growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra

The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (CO2) uptake may, in part, offset respiratory losses. To determine the effects of air and soil warming on CO2 exchang...

متن کامل

Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world1–4. Using integrated metagenomic technologies, we showed that themicrobial functional community structure in the active layer of tun...

متن کامل

Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra

Old soil carbon (C) respired to the atmosphere as a result of permafrost thaw has the potential to become a large positive feedback to climate change. As permafrost thaws, quantifying old soil contributions to ecosystem respiration (Reco) and understanding how these contributions change with warming is necessary to estimate the size of this positive feedback. We used naturally occurring C isoto...

متن کامل

Permafrost degradation stimulates carbon loss from experimentally warmed tundra.

A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years because cold and waterlogged conditions have protected soil organic material from microbial decomposition. As the climate warms this vast and frozen C pool is at risk of being thawed, decomposed, and released to the atmosphere as greenhouse gasses. At the same time, some C losses may be offset by warmi...

متن کامل

Moisture drives surface decomposition in thawing tundra

[1] Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012